
18/9/2007 I2A 98 slides 2 1 Richard Bornat
Dept of Computer Science

A glance at big-O notation.

There are precise way of talking about the
approximate properties of programs. We are going to
use one, called big-O notation.

If we write that the execution time of program P is
O N 2() we mean “in the worst case, its execution time
is roughly proportional to N 2, given a large enough
problem”.

Usually, worst-case behaviour is much easier to work
with: what a program does given the most fiendish
problem (of size N, or whatever) that there can be.

Sometimes, programs have different behaviour on
large and small problems.

So: in the worst case, and given a large enough
problem.

Later in the course I shall be more precise about the meaning
of big-O notation; for the moment just treat it as a convenient
shorthand.

18/9/2007 I2A 98 slides 2 2 Richard Bornat
Dept of Computer Science

We have already seen algorithms for the same
problem which have O N() and O N 2() execution
times.

It is possible to be better than O N(); it’s possible to
be better than O N() and worse than O N 2(). Many
algorithms have O Nlg() or O N Nlg() execution times

lg N is log2 N

0 1 2 3 4 5 6 7 8 9 10
lg n

n
n lg n

n^2

0

20

40

60

80

100

18/9/2007 I2A 98 slides 2 3 Richard Bornat
Dept of Computer Science

0
10 20 30 40 50 60 70 80 90

10
0

lg n
n

n lg n
n^2

0

2000

4000

6000

8000

10000

18/9/2007 I2A 98 slides 2 4 Richard Bornat
Dept of Computer Science

If we leave out the worst offender, we can see how the other
three compare:

0
10 20 30 40 50 60 70 80 90

10
0

lg n
n

n lg n

0

100

200

300

400

500

600

700

18/9/2007 I2A 98 slides 2 5 Richard Bornat
Dept of Computer Science

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 1
0

n

lg n

lg N grows so slowly that N Nlg looks almost linear.

We shall see that execution times for obvious sorting
algorithms are O N 2(), clever ones are O N Nlg().

We shall see that execution times for obvious searching
algorithms are O N(), clever ones are O Nlg() or better.

If you think all this is impossibly detailed and nit-picking, you
are studying the wrong subject.!!

18/9/2007 I2A 98 slides 2 6 Richard Bornat
Dept of Computer Science

Sorting.

This is a classical computer science problem, with all
kinds of practical applications.

It’s important because you can

• merge sorted arrays in O N() time;

• search a sorted array in O Nlg() time;

• find the median of a sorted array in O 1()
(constant: better than logarithmic) time;

• eliminate duplicates in a sorted array in O N()
time;

• ... and so on.

Sorting is a ‘high-level primitive’ in lots of program
design work: lots of solutions involve sorting the data
at some stage or other.

18/9/2007 I2A 98 slides 2 7 Richard Bornat
Dept of Computer Science

Specifying a sorting algorithm

The problem is to take in a (possibly disordered)
sequence of values and to output an ordered sequence.

We can sort anything on which we define an order:
names, numbers, bus routes, football teams, pop
groups ... Just define the ordering.

As an example we are going to take sequences of
integers. The obvious ordering is then either (<) or
(>), but we shall use (!), because we don’t mind if
our input sequences contain repetitions.

technical language: a sequence ordered by (<) is in ascending
order; (>) is descending order; my chosen ordering (!) is non-
descending (think about it!) and then, of course, (") is non-
ascending order.

18/9/2007 I2A 98 slides 2 8 Richard Bornat
Dept of Computer Science

The specification says: take a possibly disordered
sequence and produce an ordered sequence. What we
mean is, for example:

Input Output

[4, 3, 1, 7] [1, 3, 4, 7]

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

[1, 2, 3, 1, 2, 3] [1, 1, 2, 2, 3, 3]

But a strict reading of the specification reveals a flaw:
our program could behave like this:

Input Output

[4, 3, 1, 7] [1, 2, 3, 4, 5]

[1, 2, 3, 4, 5] [1, 2, 3, 4, 5]

[1, 2, 3, 1, 2, 3] [1, 2, 3, 4, 5]

18/9/2007 I2A 98 slides 2 9 Richard Bornat
Dept of Computer Science

This is a famous flaw: the specification doesn’t relate
the output to the input.

To be more precise:

start with an array A;

produce A', such that (i) A' is ordered by (!);
(ii) A' is a permutation of A.

technical language: ‘permutation’. Look it up in a dictionary:
it sort of means ‘re-arrangement’, ‘shuffle’.

This is what ‘ordered by (!)’ means:

B n i j i j n B Bi j= #$! < < # !(), 0

(read as: if B is a sequence of length n, then
whenever i comes before j and both are indices
within the bounds of B, Bi can be put before Bj

in the (!) ordering.)
Notice the technical language: ‘indices’, ‘ordering’,
‘bounds’. Here, the operation ... means ‘length of’.

18/9/2007 I2A 98 slides 2 10 Richard Bornat
Dept of Computer Science

Is an empty sequence (a sequence of length 0) sorted?
Well certainly it is. The definition of ‘ordered’

$! < < # !()i j i j n B Bi j, 0

is satisfied if n is zero, simply because there are no
counter examples – we can’t find i and j such that
0 0! < <i j .

If there are no counter-examples it must be true, mustn’t it?

But there are no counter-examples (I hope) to the remark “all
the circus elephants in this room are drunk”. So it must be
true, mustn’t it?
Can I shake your faith in what you read, so that you challenge
it?

For just the same reason a single-element sequence is
sorted – we can’t find i and j such that 0 1! < <i j .

By the time we get to two-element sequences the
content of the sequences begin to matter: i = 0 and
j = 1 satisfies 0 2! < <i j , and we know that we must
have B B0 1! .

18/9/2007 I2A 98 slides 2 11 Richard Bornat
Dept of Computer Science

It’s more difficult to say what a permutation of a
sequence is. If we write Freq B x(,) to mean ‘the
number of times the value x occurs in sequence B’
then ‘C is a permutation of B’ can be written as

$ =()i Freq B i Freq C i(,) (,)

(in words: every integer i must occur exactly as
many times in B as it does in C.)

That condition is impossible to check in finite time,
because there are infinitely many integers. It won’t
do. Oh dear.

Questions like: “can you calculate the answer in finite time?”
matter greatly to computer scientists. They are at the root of
the subject of this course and other courses. Since I’m not
going to prove formally that my programs satisfy this
condition, it doesn’t matter that I can’t check it, but I’m going
to proceed as if it did matter.

18/9/2007 I2A 98 slides 2 12 Richard Bornat
Dept of Computer Science

We really only need to check the integers which
actually occur in B and C:

B n

i i n
Freq B B Freq C B
Freq B C Freq C C

i i

i i

= #

$! < #
= %

=
&
'
(

)
*
+

&

'
(

)

*
+0

(,) (,)
(,) (,)

(in words: every value Bi must occur exactly as many
times in B as it does in C, and vice-versa for Ci.)

We don’t need to say that the length of sequence B is the same
as the length of sequence C – it’s an implicit consequence of
the definition.

Can you spot what goes wrong if we only check the Bi
frequencies and ignore the Cis? That kind of ‘logical
debugging’ is what computer scientists must be able to do.

Can you spot what’s wrong with this definition of
permutation? It isn’t simply that it misses a ‘vice-versa’
condition – it’s wronger than that.

B n i i n j j n B Ci j= #$! < #, ! < # =()()0 0

18/9/2007 I2A 98 slides 2 13 Richard Bornat
Dept of Computer Science

The specification of a sorting algorithm, for the
purposes of this discussion, is that it starts with an
array A of length n, and it produces A' which is a
permutation of A and is ordered by (!).

Further we need to say:

A sequence C of length n is ordered if

$! < < # !()i j i j n C Ci j, 0

C is a permutation of B (and B is therefore a
permutation of C) if

$! < #
= %

=
&
'
(

)
*
+

&

'
(

)

*
+i i n

Freq B B Freq C B
Freq B C Freq C C

i i

i i

0
(,) (,)
(,) (,)

We shan’t often bother with specifications so difficult as the
specification of a permutation. It is included here just to show
that it is possible to be precise, if you are prepared to make the
effort.

this is by no means the only, nor even the best, definition of
what it means for B to be a permutation of C.

18/9/2007 I2A 98 slides 2 14 Richard Bornat
Dept of Computer Science

If I had said that the output should be in ascending (<)
order, I would have written an unsatisfiable
specification. There is no algorithm which will sort
the sequence 1 2 1 2, , ,[] into ascending order!

How would I have to restrict the definition of the problem to
allow the specification to use (<) order rather than (!) order?.

18/9/2007 I2A 98 slides 2 15 Richard Bornat
Dept of Computer Science

Selection sort: a quadratic – O N 2() –
sorting algorithm.

i find the smallest thing in A n0 1.. -[] and
exchange it with A 0[];

ii then find the smallest thing in A n1 1.. -[] and
exchange it with A 1[];

iii then find the smallest thing in A n2 1.. -[] and
put it in A 2[];

... and so on, until all you have left is A n n- -[]1 1.. ,
(which is already sorted) or A n n.. -[]1 (ditto).

I shan’t write the whole algorithm – that’s for you to do in the
lab.

18/9/2007 I2A 98 slides 2 16 Richard Bornat
Dept of Computer Science

To find the smallest thing in A i n.. -[]1 :

min = A[i]; // min value
minp = i; // position at which min value occurs
for (j=i+1; j<n; j++)
 if (A[j]<min) { min=A[j]; minp=j; }

This program will finish with a copy of a smallest
element

not necessarily the smallest element

in min, and its index in minp. It doesn’t change i or
A i[].

Next, put A i[] in A minp[], and A minp[] in A i[]. We
have a copy of A minp[] in min:

A[minp]=A[i]; A[i]=min;

Now to find the smallest thing in A i n.. -[]1 , the first
program does n i- -1 comparisons A j min[] < in
every case.

and about n i- comparisons j n< , as part of the operation of
the for.

18/9/2007 I2A 98 slides 2 17 Richard Bornat
Dept of Computer Science

The number of assignments it does depends on the
result of those comparisons: in the worst case it does
n i- +1 assignments.

hard to say how many it does ‘on average’. Stick to the worst
case.

The number of comparisons is clearly approximately
proportional to n i- , in every case. The number of
assignments is clearly proportional to n i- , in the
worst case.

So the execution time of this part of the program
could be said to be O n i-().

18/9/2007 I2A 98 slides 2 18 Richard Bornat
Dept of Computer Science

In step (i), to find the smallest thing in A n0 1.. -[], it
does work proportional to n; in step (ii), to find the
smallest thing in A n1 1.. -[], it does work proportional
to n -1, ... and so on.

Therefore selection sort takes O n2() time.

The program doesn’t use any extra arrays, and it only
uses four variables (i, j, min, minp).

Therefore selection sort uses O 1() space.

18/9/2007 I2A 98 slides 2 19 Richard Bornat
Dept of Computer Science

Bubble-sort: another quadratic sorting
algorithm.

Almost the same idea as selection sort: find the
smallest thing in A n0 1.. -[] and permute the array so
that it appears in A 0[]; then find the smallest thing in
A n1 1.. -[] and permute the array so that it appears in
A 1[]; ... and so on.

To find the smallest thing in A i n.. -[]1 and permute
the array so that it appears in A i[]:

for (j=n-1; j>i; j--)
 if (A[j]<A[j-1]) {
 temp=A[j]; A[j]=A[j-1]; A[j-1]=temp;
 }

In time, this is an O n2() algorithm; in space it is O 1().

You can make the argument yourself.

you may be tested on the argument. Discuss it with your tutor
and all your friends.

18/9/2007 I2A 98 slides 2 20 Richard Bornat
Dept of Computer Science

Some teachers prefer bubble sort to selection sort,
because it is possible to ‘stop early’.

If the array is already sorted, the algorithm will make
no exchanges. We detect that with a variant the
standard ‘ ’, search trick:

changed = false;
for (j=n-1; j>i; j--)
 if (A[j]<A[j-1]) {
 temp=A[j]; A[j]=A[j-1]; A[j-1]=temp;
 changed = true;
 }

the trick is based on the fact that the trivial case of ,i...
evaluates to / describes ‘true’. Think of the empty set; think of
drunken circus elephants.

If the program gets to the end of a step without
making any changes, then no more steps are needed.

But in the worst case it does more work than selection sort.
You should be able to make an argument to support this.

In the average case it does more work than selection sort. You
should be able to verify this with random data in the lab.

18/9/2007 I2A 98 slides 2 21 Richard Bornat
Dept of Computer Science

Insertion sort: the best little O N 2()
algorithm.

i A 0 1.. -[] is already sorted;

ii A 0 0..[] is already sorted;

iii to sort A 0 1..[], given that A 0 0..[] is already
sorted, either leave it alone (because A A0 1[] ! [])
or insert A 1[] into A 0 0..[] before A 0[] (because
A A1 0[] ! []);

iv to sort A 0 2..[], given that A 0 1..[] is already
sorted, either leave it alone (because A A1 2[] ! [])
or insert A 2[] before A 0[] (because A A2 0[] ! [])
or between A 0[] and A 1[] (because
A A A0 2 1[] ! [] ! []);

...

18/9/2007 I2A 98 slides 2 22 Richard Bornat
Dept of Computer Science

ii+i to sort A i0..[], given that A i0 1.. -[] is already
sorted, either leave it alone (because
A i A i-[] ! []1) or insert A i[] before A 0[]
(because A i A[] ! []0) or between A j -[]1 and
A j[] (because A j A i A j-[] ! [] ! []1);

...

So the problem is to find a position j such that
0 0 1! ! % = . -[] ! []()% [] ! []j i j A j A i A i A j .

notice that if j i= we don’t have to move anything. Sneaky!

The analysis above shows that we begin our work at
step (iii), with i = 1, and we increase i at every step.

Curse the Java designers, once again, for using the equals
sign to mean ‘becomes’. In normal mathematical notation it
means ‘equal to’.

for (int i=1; i<n; i++) ...

18/9/2007 I2A 98 slides 2 23 Richard Bornat
Dept of Computer Science

On each execution of the loop body, A i A i[] ! [], so if
we start with j=i; we have established the first and
third parts of the condition; it remains to reduce j until
the middle part is satisfied:

for (int i=1; i<n; i++) {
 for (int j=i; j!=0 && A[j-1]>A[i]; j--) ;
 ...
}

The semicolon on the second line of this program is not a
mistake and it is not unnecessary.

Having found j, we can move A j i.. -[]1 up by one
position, taking care to make a copy of A i[] first:

for (int i=1; i<n; i++) {
 for (int j=i; j!=0 && A[j-1]>A[i]; j--) ;
 Value tmp = A[i];
 for (int k=i; k>j; k--) A[k]=A[k-1];
 A[j] = tmp;
}

Variables i, j and k have to be ints, but the elements of A can
be any type – not necessarily int.

18/9/2007 I2A 98 slides 2 24 Richard Bornat
Dept of Computer Science

Each of the inner fors in this program does (worst
case) work proportional to i.

There is an argument (e.g. Weiss p226) that on average j is
about half i; that means the program is on average twice as
fast as in the worst case.

Those linear inner loops are put together in such a
way (2+3+...) as to make a triangle of execution
times, so in execution time this is another O N 2()
sorting algorithm.

It uses three variables, so in space it’s another O 1()
algorithm.

18/9/2007 I2A 98 slides 2 25 Richard Bornat
Dept of Computer Science

Speeding up insertion sort.

The two inner loops of the program above run
through just exactly the same values (from i down to
the value of j such that j A j A i= . -[] ! []0 1). So it’s
possible to combine them:

for (int i=1; i<n; i++) {
 Value tmp = A[i];
 for (int j=i; j!=0 && A[j-1]>A[i]; j--)
 A[j]=A[j-1];
 A[j] = tmp;
}

and then it’s possible to avoid recalculation of A i[]:

for (int i=1; i<n; i++) {
 Value tmp = A[i];
 for (int j=i; j!=0 && A[j-1]>tmp; j--)
 A[j]=A[j-1];
 A[j] = tmp;
}

See Weiss, p225.

18/9/2007 I2A 98 slides 2 26 Richard Bornat
Dept of Computer Science

Why is insertion sort the best little
algorithm?

1 It uses no more space than the other simple sorts.

2 Fancier algorithms use more space.

3 In the best case, it is O N() (if the array is sorted,
then the inner loop never does anything).

4 On average it moves about half as many things
as bubble sort, each about twice as effectively.

Check points 3 and 4 in the lab.

Be prepared to rehearse arguments in support of each of these
points in a test. Talk to your tutors, and your friends.

18/9/2007 I2A 98 slides 2 27 Richard Bornat
Dept of Computer Science

Can selection sort be faster than insertion sort?

Selection sort does O N() exchanges, and on average
about twice as many comparisons as insertion sort; its
best case is very much the same as its worst.

Selection sort does fewer exchanges than insertion
sort, at the cost of some extra comparisons.

If the cost of comparisons dominates, insertion sort is
a winner.

If the cost of exchanges dominates (e.g. in sorting
collections of large data with small keys), selection
sort can be a winner.

